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Direct excess entropy calculation for a Lennard-Jones fluid by the integral equation method

N. Jakse1 and I. Charpentier2

1Laboratoire de The´orie de la Matière Condense´e, Universite´ de Metz, 1, Boulevard F. D. Arago, 57078 Metz Cedex 3, France
2Laboratoire de Mode´lisation et Calcul Projet Idopt (CNRS, INRIA, UJF, INPG), 51, Rue des Mathe´matiques,

Boı̂te Postale 53, F-38041 Grenoble Cedex 9, France
~Received 15 May 2002; published 27 June 2003!

The present work is devoted to the calculation of excess entropy by means of correlation functions, in the
framework of integral equation theory. The tangent linear method is set up to get exact thermodynamic
derivatives of the pair-correlation function, essential for the calculation of the physical quantities, as well as to
carry out an optimization process for the achievement of thermodynamic consistency. The two-body entropy of
the Lennard-Jones fluid is in very good agreement with the available molecular dynamics results, attesting the
high degree of accuracy of the integral equation scheme. It is shown that an accurate prediction of the excess
entropy and the resulting residual multiparticle entropy relies on the correct evaluation of the excess chemical
potential, especially at high density. Two independent routes to calculate the latter are compared, and the
consequences are discussed.

DOI: 10.1103/PhysRevE.67.061203 PACS number~s!: 61.20.Gy, 05.70.Ce, 05.20.Jj
id

th
la
s

-

te

n-

a-
th
on

x
c

o
th

b
o
od

on
ca
l-
or
on
n

n
-

ed
th
e

nt
rre-

nc-
. In
tan-
on
de-

in
ve-
ide
reti-
ics

le
suc-
iq-

LJ
to

s.
act
One of the most demanding tasks in the theory of liqu
is the evaluation of the excess entropySex, which is repre-
sentative of the number of accessible configurations to
system. It is well known that related entropic quantities p
a preponderant role, not only in the description of pha
transitions of complex fluids@1# but also in the relation be
tween the thermodynamic properties and dynamics@2–5#. In
this context, the prediction of the excess entropy and rela
quantities such as the residual multiparticle entropy~RMPE!
in terms of correlation functions, without thermodynamic i
tegration, is of primary importance.

Within the theory of distribution functions of classical st
tistical physics, the integral equation method is one of
most powerful schemes to calculate the correlation functi
of a fluid. It is based on the exact Ornstein-Zernike~OZ!
equation, which has to be solved together with an appro
mate closure relation, involving the so-called bridge fun
tion. When appropriate versions of it are used@6,7#, a high
degree of accuracy, comparable to simulation results with
the need of large computer power, can be achieved for
structural and thermodynamic properties@8# of various
classes of fluids@9#, including liquid metals@10,11#.

In evaluating entropic properties, the key quantity to
determined is the chemical potential. Two independent rig
ous ways exist, namely, the classical formula of Kirkwo
@12# on the one hand, and that based on the activity@7# on
the other hand. In order to perform a numerical evaluati
the former demands, for integration purpose, numerous
culations of the pair-correlation function with different va
ues of the charging parameter, while the latter is m
straightforward, but its local formulation is an approximati
in terms of the bridge function. Nevertheless, Kjellander a
Sarman@13#, and later Lee@14# derived a direct expressio
within Kirkwood’s formula which is also convenient and lo
cal. Moreover, very recently, Sarkisov@15# has shown that
the two local formulations are formally equivalent, provid
that the correlation functions are linear with respect to
charging parameter. However, to our best knowledge, th
were never compared numerically.
1063-651X/2003/67~6!/061203~6!/$20.00 67 0612
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The aim of the present work is to analyze the differe
routes to calculate the excess entropy in terms of the co
lation functions for a Lennard-Jones~LJ! fluid. We use the
integral equation proposed by Vompe and Martynov~VM !
@16#. The latter as well as various forms of it@17,15# have
both proved to be successful in calculating correlation fu
tions as well as the resulting thermodynamic properties
order to keep the accuracy at the highest possible level,
gent linear differentiation is applied to the integral equati
code in order to get the exact numerical thermodynamic
rivatives and to achieve thermodynamic consistency@8,18#.
The chemical potential appears to be the crucial quantity
determining the excess entropy, and the two abo
mentioned formulations are carefully examined over a w
range of densities and different temperatures. Both theo
cal results are compared to available molecular dynam
simulation data@19,21# that serve as a reference.

Let us consider a fluid of densityr and temperatureT,
whose atoms or molecules, separated by a distancer from
each other, interact via the Lennard-Jones pair potential

u~r !54e$~s/r !122~s/r !6%, ~1!

s being the position of the node ande the well depth. The LJ
potential is designed in principle to model realistic simp
fluids such as noble gases; however, it has been applied
cessfully to more complex systems including molecular l
uids such as methanol@22,23#, organic liquids @24#, and
fullerenes@9#. Therefore, the results presented with the
potential can be regarded as widely applicable, in addition
being a convenient benchmark to test liquid state theorie

The integral equation method is based on the ex
Ornstein-Zernike equation

h~r !5c~r !1rE h~r 8!c~ ur2r 8u!dr 85c~r !1g~r !. ~2!

To determine the total correlation functionh(r )@5g(r )
21#, the direct correlation functionc(r ), and the indirect
©2003 The American Physical Society03-1
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correlation functiong(r ), the OZ equation is solved togethe
with a closure relation written in the formally exact expre
sion

h~r !5exp@2bu~r !1g~r !1B~r !#21, ~3!

whereb51/kBT, kB being Boltzmann’s constant. Equatio
~3! depends on the so-called bridge functionB(r ) which rep-
resents an infinite sum of elementary bridge diagrams@7#. As
the latter is very slowly convergent, it has to be appro
mated to find a concrete solution of the system formed
Eqs. ~2! and ~3!. Here we use the one proposed by Vom
and Martynov@16#:

B~r !5
1

2A
„$114A@g~r !2bu2~r !#%1/2

2122A@g~r !2bu2~r !#…, ~4!

whereu2(r ) is the attractive part of the pair potential accor
ing to the Weeks, Chandler, and Andersen~WCA! splitting
@25#. The parameterA is fixed for each thermodynamic sta
on a physical ground by imposing the consistency betw
independent thermodynamic routes, namely, the virial
compressibility routes on the one hand, and the virial a
energy routes on the other hand@8#.

Once the pair-correlation functiong(r ) is obtained, the
thermodynamic quantities of interest can easily be ca
lated, e.g., the excess internal energy per particle

Uex

^N&
52prE u~r !g~r !r 2dr, ~5!

the pressureP from the virial equation of states

P5rkBT2
2pr2

3 E r
du~r !

dr
g~r !r 2dr, ~6!

and the isothermal compressibilityxT through the compress
ibility route

1

xT
5rkBTF124prE c~r !r 2dr G . ~7!

The Gibbs-Duhem~GD! relation that links the chemical po
tential to the pressure via the compressibility route provi
the following expression for the excess chemical poten
@26#:

bmex524pE
0

r

dr8E c~r ,r8!r 2dr, ~8!

which can be calculated only by a thermodynamic integ
tion this way. A local formulation ofbmex is therefore highly
desirable in terms of correlation functions and we consi
the two following approximate direct formulas: first, th
given by Lee@14#,
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bmex,L54prE S g~r !1B~r !2h~r !1
1

2
h~r !g~r !

1h~r !B~r !2
h~r !

g* ~r !
E

2bu2~r !

g* ~r !
B~g8!dg8D r 2dr,

~9!

in which it is assumed thatB(r ) can be expressed as
unique function of the indirect correlation functiong(r ) or a
renormalized version of it,g* (r )5g(r )2bu2(r ) as pro-
posed by Leeet al. @33#, and secondly, that propounded b
Kiselyov and Martynov @27# and explored recently by
Schmidt@28# and Sarkisov@15#,

bmex,KM54prE Fg~r !1B~r !2h~r !

1
1

2
h~r !S g~r !1

4

3
B~r ! D G r 2dr. ~10!

It is worth mentioning that the latter expression seems to
more convenient than the one given by Eq.~9! since it does
not require any renormalization ofg(r ) involving a splitting
of the pair potential@29#, such as the WCA one. Moreover,
does not require any analytic expression ofB(r ) as a func-
tion of g(r ) or g* (r ) as it is the case in Eq.~9!, where the
integral ofB(r ) is needed. It is interesting to note that the
expressions of the excess chemical potential are grounde
two independent routes. While the former is derived from
formula given by Kirkwood@12# in which the charging pa-
rameter accounts for an insertion of a particle in the fluid,
latter is based on the activity in whichbmex is expressed in
terms of the one-particle direct correlation function@7#.

The excess entropy can be obtained in the framework
the grand canonical ensemble as a multiparticle expansio
proposed by Nettleton and Green@30# as well as by Raveche´
@31# later on:

Sex5 (
n52

`

Sn , ~11!

which is expressed here in units ofkB per particle. Sex de-
pends onn-body correlation functions and, for instance, t
two-body term is written in terms of the pair-correlatio
function as

S2522prE @g~r !ln g~r !2g~r !11#r 2dr. ~12!

As shown by Baranyai and Evans@19# using molecular dy-
namics simulation on the Lennard-Jones fluid,S2 represents
from 85% to 95% of the excess entropy. Therefore,S2 pro-
vides a simple and good estimate of the excess entropy
pecially near the melting point@2#, and requires only the
knowledge of the pair-correlation function. As a matter
fact, these authors@20#, who also computedS3 , the three-
body term, were the first to show that the expansion is
semble independent. This is very important regarding
3-2
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consistency between different thermodynamic routes p
scribed by the integral equation used in the present work.
the other hand, from the macroscopic point of view,Sex can
be expressed in terms of the excess internal energyUex, pres-
sureP, and excess chemical potentialmex as follows:

FIG. 1. Excess chemical potential as a function of density al
theT* 51.5 isotherm calculated with the VM integral equation. T
full line represents the results coming from Eq.~10!, the dashed line
is those obtained by using Eq.~9!, and the dot-dashed line is ex
tracted from the Gibbs-Duhem equation~8!. The symbols belong to
the simulation data@33# ~triangles! and the equation of state@35#
~open circles!. The solid lines in the inset represent the calculatio
of the excess internal energy~bottom curve! and compressibility
factor ~upper curve!, which are compared to the equation of sta
@34# for the excess internal energy~filled circles! and compressibil-
ity factor ~squares!.
06120
e-
n

Sex5
bP

r
211

bUex

^N&
2bmex. ~13!

Finally, since all the thermodynamic quantities in the rig
hand side of Eq.~13! can be calculated by means of th
pair-correlation function, it is also the case forSex and the
residual multiparticle entropyDS5Sex2S2 .

The results presented here are obtained by solving
merically the VM integral equation given by Eq.~4! together
with the OZ equation using the algorithm of Labiket al. @32#
which combines the Newton-Raphson~NR! method and the
traditional iterative technique. A good compromise betwe
accuracy and rapidity is to represent the functions by a g
size of 1024 with a mesh of 0.02. The number of 80 eq
tions are treated by the NR method, which guarantees a g
and rapid convergence in all cases. The tangent linear di
entiation method is applied twice to the code, the first time
yield exact thermodynamic derivatives ofg(r ) and the sec-
ond time with respect to the parameterA for the optimization
process by the gradient method@18#, in order to get a ther-
modynamically consistent value ofA for each thermody-
namic state. We refer the reader to Refs.@8# and@18# for the
technical details of this procedure. The physical quantit
are expressed in Lennard-Jones units, for instance, the
duced temperature isT* [kBT/e and the reduced density i
r* [rs3.

In Fig. 1, we display the excess chemical potential cal
lated through either Eqs.~9! or ~10! along the isothermT*
51.5. Up tor* 50.5, both expressions give results that a
very close to each other, while significant differences can

g

s

d

TABLE I. Excess internal energyUex/N«, compressibility factorbP/r, and excess entropySex of the
Lennard-Jones fluid calculated with the VM integral equation. The superscriptsL, KM, GD, and HV corre-
spond, respectively, to results obtained by using Eqs.~9!, ~10!, and~8!, and simulation data from Hansen an
Verlet ~HV! @37# while the subscript MD stems from molecular dynamics simulation data from Refs.@19# ~a!
and @21# ~b!.

T* r* Uex/N« UMD
ex /N« bP/r bPMD /r Sex,L Sex,KM Sex,GD Sex,HV

1.15 0.5 23.4519 23.499~a! 20.2046 21.3129 21.4778 21.4778 21.457
1.15 0.6 24.1093 24.130~a! 0.0274 21.5113 21.8530 21.9213 21.815
1.15 0.65 24.4461 24.458~a! 0.2619 21.5741 22.0929 22.1955 22.037
1.15 0.75 25.1001 25.108~b! 1.1721 1.161~b! 21.5828 22.6565 22.7759 22.556
1.15 0.85 25.6666 25.665~b! 2.8675 2.865~b! 21.3355 23.3462 23.3920 23.150
1.15 0.92 25.9678 25.953~b! 4.6702 4.719~b! 20.9380 23.9193 23.8318 23.625
1.15 0.93 26.0023 25.986~b! 4.9768 5.022~b! 20.8626 24.0081 23.8943 23.671
1.15 0.94 26.0342 26.013~b! 5.2967 5.364~b! 20.7821 24.0988 23.9564 23.739
1.15 0.95 26.0637 26.039~b! 5.6303 5.711~b! 20.6963 24.1912 24.0182 23.810
1.15 0.96 26.0904 26.063~b! 5.9779 6.069~b! 20.6051 24.2854 24.0795 23.882
1.15 0.97 26.1144 26.082~b! 6.3400 6.450~b! 20.5083 24.3817 24.1404 23.953
0.75 0.7 25.0457 25.076~a! 21.6179 20.812~a! 21.5125 22.7760 22.7760 22.595
0.75 0.8 25.7530 25.772~a! 20.3555 20.294~a! 21.1773 23.5719 23.5430 23.226
0.75 0.84 26.0152 26.024~b! 0.4973 0.441~b! 20.9257 23.9389 23.8465 23.441
0.75 0.85 26.0777 26.084~b! 0.7466 0.692~b! 20.8502 24.0351 23.9217 23.516
0.75 0.86 26.1389 26.134~b! 1.0112 0.952~b! 20.7693 24.1330 23.9967 23.581
0.75 0.87 26.1984 26.192~b! 1.2918 1.244~b! 20.6830 24.2325 24.0709 23.659
3-3
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N. JAKSE AND I. CHARPENTIER PHYSICAL REVIEW E67, 061203 ~2003!
ment can be attributed to the integral equation given by
~4! or to the specific formulation of the chemical potenti
we calculatedbmex from Eq. ~8!. This is done by fitting the
values of*c(r ,r8)r 2dr in the range 0<r* <1.15 by a poly-
nomial of order 3 in density which can then be integra
analytically to getbmex as a function ofr* . Surprisingly, the
chemical potential obtained in this manner compares fav
ably to the simulation results of Leeet al. @33# and the equa-
tion of state of Johnsonet al. @34#, attesting to the quality of
the VM integral equation. These results are also very clos
those coming from Eq.~10!, and small discrepancies appe
only at very high densities abover* 51.0, in the supercooled
metastable region. It appears that Eq.~10! is more accurate
than Eq.~9!, and this reveals the difficulties encountered
the direct calculation ofbmex in our previous work@8#. The
inset of Fig. 1 shows the curves of the excess internal en
and compressibility factor as a function of density, whi
compare favorably with the results from the equations
state@35#.

In Table I, we gather the excess internal energy and c
pressibility factor, which are compared with the molecu
dynamics~MD! data of Baranyai and Evans@19# and Gi-
aquintaet al. @21#, for isothermsT* 51.5, 1.15, and 0.75
corresponding to states in the supercritical region, the s
critical region, and the vicinity of the triple point, respe
tively. Very good results are obtained since the values ca
lated with the VM integral equation depart from the M
ones by no more than 1–2 % in the majority of cases
deviation of 3–50 % is seen in the compressibility factor
T* 50.75; however, since the values obtained with both
VM integral equation and the MD are close to zero, t
absolute departure is not large. The excess entropy can th
fore be calculated with confidence from the excess inte
energy and compressibility factor. The results ofSex pre-
sented in Table I depend also on the excess chemical po
tial that are calculated directly by using either Eq.~9! or Eq.
~10!. Taking the values extracted from the MD simulatio
data of Hansen and Verlet@37# as a reference, it appears th
Sex calculated on the basis of Eq.~10! gives the best predic
tions. At the lowest temperature and highest densities,
discrepancies are more significant due to the approxim
values ofbmex. However, these do not overestimate the M
data by more than 16%. Obviously, the results ofSex calcu-
lated by using Eq.~9! do not yield correct values except
T* 51.15 for the two lowest densities.

As for the chemical potential,Sex can be calculated from
Eq. ~8! by a thermodynamic integration. Taking the value
the chemical potential given by Eq.~10! as a reference
namely, bmex(r* 50.7)526.569 49 at T* 50.75 and
bmex(r* 50.5)522.728 43 atT* 51.15, the results are in
good agreement with those coming from Eq.~10!. It is worth
noticing that the agreement improves slightly in nearly
the cases with respect to the MD data, essentially revea
the approximate nature of the direct formula given by E
~10!. Nevertheless, one can conclude that Eq.~10! leads to
accurate predictions ofSex, even at very high densities. It i
worth mentioning that the thermodynamic consistency tha
obtained by an optimization of the parameterA is very im-
portant in the present scheme. This confirms the stateme
06120
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Schmidt@28# who attributed the discrepancies of his resu
at high density to the thermodynamic inconsistency of
closure he used.

We come now to the calculation of the two-body entro
S2 and the RMPE, namely,DS5Sex2S2 , which are pre-

TABLE II. Two-body contribution to the excess entropyS2 and
residual multiparticle entropyDS calculated with Eq.~10!. The sub-
script MD for S2 corresponds to molecular dynamics simulati
data from Refs.@19# ~a! and @21# ~b!, and subscripts GD and MD
for DS correspond, respectively, to results obtained with Eq.~8! and
molecular dynamics simulation data@37#.

T* r* S2 S2,MD DS DSGD DSMD

1.5 0.1 20.244 20.240~a! 20.015 20.023
1.5 0.2 20.470 20.466~a! 20.048 20.043
1.5 0.3 20.673 20.660~a! 20.100 20.066
1.5 0.4 20.874 20.876~a! 20.161 20.114
1.5 0.5 21.106 21.115~a! 20.237 20.288
1.5 0.6 21.393 21.401~a! 20.329 20.453
1.5 0.7 21.760 21.757~a! 20.420 20.583
1.5 0.8 22.247 22.234~a! 20.487 20.616
1.5 0.9 22.909 22.871~a! 20.497 20.485
1.5 1 23.815 20.418 20.114
1.5 1.01 23.921 20.404 20.061
1.5 1.02 24.032 20.389 20.005
1.5 1.03 24.145 20.372 0.054
1.5 1.04 24.262 20.354 0.117
1.5 1.11 25.218 20.016 0.854
1.5 1.12 25.369 0.026 0.959
1.15 0.5 21.203 21.250~a! 20.275 20.275 20.207~a!

1.15 0.6 21.511 21.540~a! 20.342 20.410 20.275~a!

1.15 0.65 21.700 21.720~a! 20.393 20.495 20.317~a!

1.15 0.75 22.182 22.203~b! 20.474 20.594 20.376~b!

1.15 0.85 22.859 22.855~b! 20.487 20.533 20.320~b!

1.15 0.92 23.495 23.462~b! 20.425 20.337 20.195~b!

1.15 0.93 23.599 23.566~b! 20.409 20.295 20.105~b!

1.15 0.94 23.707 23.668~b! 20.392 20.249 20.071~b!

1.15 0.95 23.819 23.771~b! 20.372 20.199 20.039~b!

1.15 0.96 23.935 23.882~b! 20.351 20.145 0.000~b!

1.15 0.97 24.055 23.993~b! 20.327 20.086 0.040~b!

1.15 0.98 24.179 20.301 20.022
1.15 0.99 24.307 20.273 0.047
1.15 1.05 25.174 20.041 0.578
1.15 1.06 25.335 0.010 0.689
0.75 0.7 22.231 22.310~a! 20.544 20.544 20.285~a!

0.75 0.8 22.967 22.980~a! 20.605 20.576 20.246~a!

0.75 0.84 23.361 23.378~b! 20.578 20.485 20.063~b!

0.75 0.85 23.470 23.492~b! 20.565 20.451 20.024~b!

0.75 0.86 23.584 23.599~b! 20.549 20.412 0.018~b!

0.75 0.87 23.703 23.711~b! 20.529 20.368 0.052~b!

0.75 0.92 24.370 20.361 20.034
0.75 0.93 24.510 20.302 0.068
0.75 0.94 24.656 20.239 0.178
0.75 0.95 24.808 20.171 0.301
0.75 0.96 24.951 20.089 0.550
3-4
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sented in Table II. Strikingly, the results forS2 , being ob-
tained independently fromSex by means of Eq.~12!, are in
excellent agreement with the MD data@19,2# in all the cases
considered here, which means that the pair-correlation fu
tions g(r ) obtained from the VM integral equation are co
rect for a wide region of the phase diagram. The RMPE
then determined fromSex, which is obtained from the chemi
cal potential calculated by using either Eq.~10! or Eq. ~8!.
We have not considered the case with Eq.~9! since it leads to
incorrect results. The quantityDS is always very small and is
therefore very sensitive to the approximations made in
calculation ofSex. As a result, the calculatedDS take higher
values than the MD ones whatever the formulation us
however those coming from the Gibbs-Duhem integrat
are seen to be in slightly better agreement.

As evidenced by Giaquintaet al. @2,21#, the RMPE re-
flects the phase changes of the system despite its small
and a vanishingDS may correspond to the freezing of th
liquid. It is seen that the zeros ofDS we have obtained are
shifted toward higher densities and, according to this cr
rion, the resulting freezing densities are somewhat hig
than those of the simulation. The RMPE coming from t
Gibbs-Duhem relation yields the best predictions, and i
worth mentioning that atT* 51.15 and 0.75 our results ar
very similar to those obtained by Lombaet al. @36# with the
reference hypernetted chain integral equation. Neverthe
to calculate the excess entropy, these authors used a d
tion in terms of the excess free energy. They attributed
discrepancies to the evaluation ofS2 , which represents the
major source of errors. From our calculations, we find t
the evaluation ofSex represents the essential impediment
an accurate determination of the RMPE since in our integ
equation scheme it relies on the evaluation of the chem
potential by an approximate direct formula.
f

, J
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By the light of our results, it appears that Eq.~9! is valid
only at low and moderate densities i.e., belowr* 50.5,
while Eq. ~10! is reliable also at higher ones, small discre
ancies appearing only near the freezing line. Sarkisov@15#
has shown that Eqs.~9! and~10! are equivalent when bridge
functions of the form given by Eq.~4! are used and with the
assumption that the correlation functions satisfy linear
with respect to the charging parameter for the particle ins
tion of Kirkwood’s formula. The present numerical resu
reveal that this is not the case at densities characteristi
the dense liquid. Therefore, it is likely that the linearity do
not hold any more at high densities. Finally, for the purpo
of determining small quantities such as the residual multip
ticle entropy, further improvement will depend on a bet
formulation of the excess chemical potential as well as o
better expression of the bridge function on which it is bas

In conclusion, we have calculated the excess entropy
rectly in terms of correlation functions. In the prese
scheme, its evaluation relies on an accurate determinatio
the chemical potential. Within the integral equation
Vompe and Martynov@16#, we have shown that the direc
formulation proposed by Kiselyov and Martynov@27# gives
correct predictions, while the direct formula of Lee@14#
gives good results only at low and moderate densities. Th
fore, both direct formulations of the chemical potential a
reliable to obtain the liquid-gas coexistence curve as sho
by Duh and Haymet@29#. This study opens the possibility o
going toward the determination of phase diagrams for diff
ent types of potential by a formulation based only on cor
lation functions. In addition, we have also shown that t
two-body entropy can be calculated with a high degree
accuracy and could be used for the determination of the s
diffusion coefficient by means of an universal scaling la
such as that proposed by Dzugutov@4# for dense liquids.
Work along these lines is in progress.
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