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Direct excess entropy calculation for a Lennard-Jones fluid by the integral equation method

N. Jaksé and |. Charpentiér
!Laboratoire de Therie de la Matiee Condense, Universitede Metz, 1, Boulevard F. D. Arago, 57078 Metz Cedex 3, France
2Laboratoire de Modksation et Calcul Projet Idopt (CNRS, INRIA, UJF, INPG), 51, Rue des Muttiigues,
Boite Postale 53, F-38041 Grenoble Cedex 9, France
(Received 15 May 2002; published 27 June 2003

The present work is devoted to the calculation of excess entropy by means of correlation functions, in the
framework of integral equation theory. The tangent linear method is set up to get exact thermodynamic
derivatives of the pair-correlation function, essential for the calculation of the physical quantities, as well as to
carry out an optimization process for the achievement of thermodynamic consistency. The two-body entropy of
the Lennard-Jones fluid is in very good agreement with the available molecular dynamics results, attesting the
high degree of accuracy of the integral equation scheme. It is shown that an accurate prediction of the excess
entropy and the resulting residual multiparticle entropy relies on the correct evaluation of the excess chemical
potential, especially at high density. Two independent routes to calculate the latter are compared, and the
consequences are discussed.
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One of the most demanding tasks in the theory of liquids The aim of the present work is to analyze the different
is the evaluation of the excess entrof§f, which is repre- routes to calculate the excess entropy in terms of the corre-
sentative of the number of accessible configurations to th&ation functions for a Lennard-JongkJ) fluid. We use the
system. It is well known that related entropic quantities playintegral equation proposed by Vompe and Martyrid)

a preponderant role, not only in the description of phasél6]. The latter as well as various forms of[it7,15 have
transitions of complex fluid§l] but also in the relation be- both proved to be successful in calculating correlation func-
tween the thermodynamic properties and dyna[fﬁeg] In tions as well as the resulting thermodynamic properties. In
this context, the prediction of the excess entropy and relatefirder to keep the accuracy at the highest possible level, tan-
quantities such as the residual multiparticle entrGRWPE) gent linear differentiation is applied to the integral equation
in terms of correlation functions, without thermodynamic in- code in order to get the exact numerical thermodynamic de-
tegration, is of primary importance. rivatives and to achieve thermodynamic consistef&{8].

Within the theory of distribution functions of classical sta- The chemical potential appears to be the crucial quantity in
tistical physics, the integral equation method is one of thedetermining the excess entropy, and the two above-
most powerful schemes to calculate the correlation functiong§entioned formulations are carefully examined over a wide
of a fluid. It is based on the exact Ornstein-Zernikaz) range of densities and different temperatures. Both theoreti-
equation, which has to be solved together with an approxical results are compared to available molecular dynamics
mate closure relation, involving the so-called bridge func-simulation datd 19,21 that serve as a reference.
tion. When appropriate versions of it are uiﬁ;ﬂ], a h|gh Let us consider a fluid of density and temperaturd,
degree of accuracy, comparable to simulation results withouthose atoms or molecules, separated by a distarfeem
the need of large computer power, can be achieved for theach other, interact via the Lennard-Jones pair potential
structural and thermodynamic properti¢8] of various
classes of fluid$9], including liquid metalg10,11. u(r)=4€{(alr)?=(olr)%, (1)

In evaluating entropic properties, the key quantity to be ) N
determined is the chemical potential. Two independent rigoro” being the position of the node ardhe well depth. The LJ
ous ways exist, namely, the classical formula of KirkwoodPotential is designed in principle to model realistic simple
[12] on the one hand, and that based on the activiyon ~ fluids such as noble gases; however, it has been applied suc-
the other hand. In order to perform a numerical evaluationc€ssfully to more complex systems including molecular lig-
the former demands, for integration purpose, numerous caHids such as methangR2,23, organic I|qU|ds[24J, and
culations of the pair-correlation function with different val- fullerenes[9]. Therefore, the results presented with the LJ
ues of the charging parameter, while the latter is morePotential can be regarded as widely applicable, in addition to
straightforward, but its local formulation is an approximation b€ing a convenient benchmark to test liquid state theories.
in terms of the bridge function. Nevertheless, Kjellander and  The integral equation method is based on the exact
Sarman[13], and later Led14] derived a direct expression Ornstein-Zernike equation
within Kirkwood'’s formula which is also convenient and lo-
cal. Moreover, very recently, Sarkisgt5] has shown that
the two local formulations are formally equivalent, provided
that the correlation functions are linear with respect to the
charging parameter. However, to our best knowledge, thesto determine the total correlation function(r)[=g(r)
were never compared numerically. —1], the direct correlation functioe(r), and the indirect
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correlation functiony(r), the OZ equation is solved together . 1
with a closure relation written in the formally exact expres- Bu® =47TPJ ( y(1)+B(r)—h(r)+ 5 h(r)y(r)
sion
h(r) [ym
h(r)=exd —Bu(r)+ y(r)+B(r)]—1, 3 +h(r)B(r)— —
YH(r) J=Buyr)

B(y’)dy’)rzdr,

where 8=1/kgT, kg being Boltzmann’s constant. Equation 9)
(3) depends on the so-called bridge funct®fr) which rep- o

resents an infinite sum of elementary bridge diagrifhsAs 1N Which it is assumed thaB(r) can be expressed as a
the latter is very slowly convergent, it has to be approxi-unique fu_nctlon of Fhe |nd|.rect correlation functiofr) or a
mated to find a concrete solution of the system formed byenormalized version of ity (r)=y(r) —Bu,(r) as pro-

Egs. (2) and (3). Here we use the one proposed by Vompeposed by Leeet al. [33], and secondly, that propounded by
and Martynov{16]: Kiselyov and Martynov[27] and explored recently by

Schmidt[28] and SarkisoJ15],

1
B(r)= ﬂ({l"‘ﬁlA[')’(r)_Buz(r)]}l/z BMEX'KM:47Tpf {’y(r)‘f‘B(l’)_h(l’)

—1-2A[y(r)—Buy(r)]), (4)
radr. (10

1 4
+—mm(wm+—suﬁ
whereu,(r) is the attractive part of the pair potential accord- 2 3

ing to the Weeks, Chandler, and Anderg®¥iCA) splitting ) L .
[25]. The parameteA is fixed for each thermodynamic state It is worth mentioning that the latter expression seems to be
on a physical ground by imposing the consistency betweef'0r€ convenient than the one given by Eg). since it does

independent thermodynamic routes, namely, the virial and©t réquire any renormalization of(r) involving a splitting
compressibility routes on the one hand, and the virial and®f the pair potential29], such as the WCA one. Moreover, it

energy routes on the other hafgl. does not require any analytic expressionBgf) as a func-
Once the pair-correlation functiog(r) is obtained, the tion of ¥(r) or y*(r) as it is the case in Ed9), where the

thermodynamic quantities of interest can easily be calcuintegral pr(r) is needed. It is in'teresting to note that these'
lated, e.g., the excess internal energy per particle expressions of the excess chemical potential are grounded in

two independent routes. While the former is derived from the
ex formula given by Kirkwood[12] in which the charging pa-
= ZWPJ’ u(r)g(r)r2dr, (5) rameter accounts for an insertion of a particle in the fluid, the
(N) latter is based on the activity in whighu®* is expressed in
terms of the one-particle direct correlation functiaf.
the pressur® from the virial equation of states The excess entropy can be obtained in the framework of
the grand canonical ensemble as a multiparticle expansion as

2mp? du(r) 2 proposed by Nettleton and Gref80] as well as by Raveche
P=pksT——3 f r—gr9(nredr, ®  [31] later on:
and the isothermal compressibiligy through the compress- ex_ "
ibility route S nzz Sh (D
1 ) which is expressed here in units kyf per particle. S de-
;IPKBT 1_47Tpf c(r)redr. (7)  pends om-body correlation functions and, for instance, the
two-body term is written in terms of the pair-correlation
function as

The Gibbs-Duhen{GD) relation that links the chemical po-
tential to the pressure via the compressibility route provides

the following expression for the excess chemical potential S,= —qupJ' [g(n)Ing(r)—g(r)+1]r2dr. (12
[26]:

As shown by Baranyai and Evaf$9] using molecular dy-
Bu= —47Tfpdp’f c(r,p’)radr, (8)  hamics simulation on the Lennard-Jones fluigl represents
0 from 85% to 95% of the excess entropy. Theref@g pro-
vides a simple and good estimate of the excess entropy es-
which can be calculated only by a thermodynamic integrapecially near the melting point2], and requires only the
tion this way. A local formulation o3 ¥ is therefore highly knowledge of the pair-correlation function. As a matter of
desirable in terms of correlation functions and we considefact, these authorf20], who also compute&;, the three-
the two following approximate direct formulas: first, that body term, were the first to show that the expansion is en-
given by Lee[14], semble independent. This is very important regarding the
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gP_ pU™
ex_ 4 — Bu® 1
S P + (N) B (13

Finally, since all the thermodynamic quantities in the right
hand side of Eq(13) can be calculated by means of the
pair-correlation function, it is also the case 8% and the
residual multiparticle entropp S=S*-S,.

The results presented here are obtained by solving nu-
merically the VM integral equation given by E@t) together
with the OZ equation using the algorithm of Latgkal.[32]
which combines the Newton-Raphs@dR) method and the
00 04 02 03 04 05 06 07 08 08 10 11 12 traditional iterative technique. A good compromise between
accuracy and rapidity is to represent the functions by a grid
size of 1024 with a mesh of 0.02. The number of 80 equa-

FIG. 1. Excess chemical potential as a function of density alongions are treated by the NR method, which guarantees a good
theT* = 1.5 isotherm calculated with the VM integral equation. The and rapid convergence in all cases. The tangent linear differ-
full line represents the results coming from E#), the dashed line  entiation method is applied twice to the code, the first time to
is those obtained by using E¢P), and the dot-dashed line is ex- yield exact thermodynamic derivatives gfr) and the sec-
tracted from the Gibbs-Duhem equati@). The symbols belong to  ond time with respect to the paramefefor the optimization
the simulation datd33] (triangles and the equation of sta{&5] process by the gradient methpti], in order to get a ther-
(open circleg The solid lines in the inset represent the calculationsmodynamica"y consistent value & for each thermody-
of the excess internal enerdfpottom curvg and compressibility  amic state. We refer the reader to RE8J.and[18] for the
factor (upper curvé which are compared to the equation of state yachpjcal details of this procedure. The physical quantities
_[34] for the excess internal energfjlled circles and compressibil- are expressed in Lennard-Jones units, for instance, the re-
ity factor (squares duced temperature * =kgT/e and the reduced density is

P* EpO'S.
consistency between different thermodynamic routes pre- In Fig. 1, we display the excess chemical potential calcu-
scribed by the integral equation used in the present work. Otated through either Eqg9) or (10) along the isothernT*

the other hand, from the macroscopic point of vi&¥ can  =1.5. Up top* =0.5, both expressions give results that are
be expressed in terms of the excess internal endfgypres-  very close to each other, while significant differences can be
sureP, and excess chemical potentjaf* as follows: seen at higher densities. In order to judge whether the agree-

TABLE |. Excess internal energy®/Ne, compressibility factoiBP/p, and excess entrop§®* of the
Lennard-Jones fluid calculated with the VM integral equation. The superstriptsl, GD, and HV corre-
spond, respectively, to results obtained by using Es(10), and(8), and simulation data from Hansen and
Verlet (HV) [37] while the subscript MD stems from molecular dynamics simulation data from Réfis(a)
and[21] (b).

™ p* U%Ne Ujp/Ne  BPlp  BPyplp  S** SHKM gxGD gV

1.15 05 —3.4519 -3.499a -—0.2046 —1.3129 —-1.4778 —-1.4778 -—1.457
1.15 0.6 —4.1093 -4.130a) 0.0274 —1.5113 -1.8530 -1.9213 -1.815
1.15 0.65 —4.4461 —4.458a) 0.2619 —1.5741 —-2.0929 -2.1955 -—2.037

1.15 0.75 —5.1001 -5.108b) 11721 1.16(b) —1.5828 —2.6565 —2.7759 —2.556
1.15 0.85 —5.6666 —5.665b) 2.8675 2.868) —1.3355 —3.3462 —3.3920 -—3.150
1.15 0.92 —-5.9678 -5.953b) 4.6702 4.71¢b) —0.9380 —3.9193 -3.8318 -3.625
1.15 0.93 —6.0023 -5.984h) 4.9768 5.02tb) —0.8626 —4.0081 —3.8943 -3.671
1.15 0.94 —-6.0342 -6.013b) 5.2967 5.3640) —0.7821 —-4.0988 -—3.9564 —3.739
1.15 0.95 —6.0637 —6.039b) 5.6303 5.71b) -0.6963 —-4.1912 -4.0182 -3.810
1.15 0.96 —6.0904 -6.063b) 5.9779 6.06b) —0.6051 —4.2854 —4.0795 -—3.882
1.15 0.97 —6.1144 -6.082b) 6.3400 6.45() —0.5083 —4.3817 —4.1404 —3.953
0.75 0.7 —5.0457 —5.076a) —1.6179 -0.812a) —1.5125 —2.7760 —2.7760 —2.595
0.75 0.8 —5.7530 -5.772a) —0.3555 -0.294a) -—1.1773 —3.5719 -3.5430 -3.226
0.75 0.84 —6.0152 —6.024b) 0.4973 0.44(b) —0.9257 —3.9389 -3.8465 —3.441
0.75 0.85 —6.0777 —6.084b) 0.7466 0.69%) —0.8502 —4.0351 -3.9217 -3.516
0.75 0.86 —6.1389 —6.134b) 1.0112 0.95(b) —0.7693 —4.1330 —3.9967 —-3.581
0.75 0.87 —6.1984 -6.192b) 1.2918 1.244) -0.6830 —4.2325 -—4.0709 —3.659
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ment can be attributed to the integral equation given by Eq. TABLE Il. Two-body contribution to the excess entroBy and
(4) or to the specific formulation of the chemical potential, residual multiparticle entropi S calculated with Eq(10). The sub-
we calculateddu® from Eq. (8). This is done by fitting the script MD for S, corresponds to molecular dy_namics simulation
values offc(r,p’)r2dr in the range 8 p* <1.15 by a poly- data from Refs[19] (a) and[21] (b), and subsc.rlpts QD and MD
nomial of order 3 in density which can then be integrated©" 2 S correspond, respectively, to results obtained with(Bpand
analytically to gef3u® as a function of* . Surprisingly, the ~Melecular dynamics simulation datar].

chemical potential obtained in this manner compares favor-_, .
ably to thepsimulation results of Lest al.[33] and tﬁe equa- L 2 S2.m0 AS  ASeo  ASw
tion of state of Johnsoat al. [34], attesting to the quality of 15 0.1 —-0.244 —0.240a) —0.015 —0.023

the VM integral equation. These results are also very closeta 5 0.2 —-0.470 —0.466a) —0.048 —0.043

those coming from Eq(10), and small discrepancies appear 15 0.3 -0.673 —0.66Qa) —0.100 —0.066

only at very high densities aboyé = 1.0, in the supercooled 15 04 -0.874 —0.876a -0.161 —0.114
metastable region. It appears that EtQ) is more accurate 15 05 -1106 —1.115a -0.237 —0.288

than Eq.(9), and this reveals the difficulties encountered for; 5 og —1303 —1.401a -0.329 —0.453

the direct calculation oBu® in our previous worK8]. The 15 7 _1 760 ~1.757a) —0.420 —0.583

inset of Fig. 1 shows the curves of the excess internal energy e  gg 2047 22343 0487 —0.616

and compressibility factor as a function of density, which _ 09 -2.909 —2.871a) —0.497 —0.485
compare favorably with the results from the equations of1 5

state[35] 1 —3.815 —0.418 —-0.114

| . 15 101 —-3.921 —0.404 —-0.061

In Table I, we gather the excess internal energy and com-1 5 102 —4.032 _0.389 —0.005
pressibility factor, which are compared with the molecular " : ' : :

1.03 —4.145 —0.372 0.054

dynamics(MD) data of Baranyai and Evarj49] and Gi-
aquintaet al. [21], for isothermsT*=1.5, 1.15, and 0.75, 15 104 —4.262 —0.354  0.117

corresponding to states in the supercritical region, the supl-> 111 —5218 —0.016  0.854

critical region, and the vicinity of the triple point, respec- 1.5 1.12 —5.369 0.026  0.959

tively. Very good results are obtained since the values calcu}-15 0.5 —1.203 —1.250a) -0.275 —0.275 —0.207a)
lated with the VM integral equation depart from the MD 1.15 0.6 —1.511 -1.540a) -0.342 —0.410 —0.275a)
ones by no more than 1-2% in the majority of cases. A1.15 0.65 —1.700 —-1.720a —0.393 —0.495 -0.317a)
deviation of 3—-50% is seen in the compressibility factor at1.15 0.75 —2.182 —2.203b) —-0.474 —0.594 —0.376b)
T* =0.75; however, since the values obtained with both thel.15 0.85 —2.859 —2.858h) —0.487 —0.533 —0.32Qb)
VM integral equation and the MD are close to zero, thel.15 0.92 —3.495 —3.463b) —0.425 —0.337 —0.195b)
absolute departure is not large. The excess entropy can therg-15 0.93 —3.599 —3.566b) —0.409 —0.295 —0.103b)
fore be calculated with confidence from the excess internall.15 0.94 —3.707 —3.668b) —0.392 —0.249 —0.071b)
energy and compressibility factor. The results $F pre- 1.15 0.95 —3.819 —3.774b) —0.372 —0.199 —0.039b)
sented in Table | depend also on the excess chemical poten-15 0.96 —3.935 —3.882b) —0.351 —0.145  0.00(b)
tial that are calculated directly by using either E®). or Eq. 1.15 0.97 —4.055 —3.993b) —0.327 —0.086  0.04(h)

(10). Taking the values extracted from the MD simulation 1,15 0.98 —4.179 ~0.301 —0.022
data of Hansen and Verlg87] as a reference, it appears that 1 15 .99 —4.307 ~0.273  0.047
S* calculated on the basis of EQLO) gives the best predic- 115 105 —-5.174 ~0041 0578
tions. At the lowest temperature and highest densities, thg 15 1 gg —5.335 0.010 0.689

discrepancies are more significant due to the approximatg ;5 o7 _2231 ~2310a) —0544 —0.544 —0.285a)
values ofgu®*. However, these do not overestimate the MD 075 0.8 -2.967 —2.980a) —0.605 —0576 —0.246a)
data by more than 16%. Obviously, the resultsS&f calcu- 0.75 0.84 —3.361 —3.378b) —0578 —0.485 —0.063b)

lated by using Eq(9) do not yield correct values except at 075 0.85 —3.470 —3.492b) —0.565 —0.451 —0.024b)

* it
! Asli‘cl)ft];?er E:T]eert'r\:\ilgatllovéetzzgzgesxltgsﬁ be calculated from O/> 086 —3584 —3593b) —0549 —0.412  0.018)
P 0.75 0.87 —3.703 —3.711b) —0.529 -0.368 0.05D)

Eq. (8) by a thermodynamic integration. Taking the value of
the chemical potential given by Eql0) as a reference, 0.75 0.92 ~4.370 ~0.361 —0.034

namely, Bu®(p*=0.7)=—6.56949 at T*=0.75 and 07> 093 —4.510 —0.302  0.068
Bu(p* =0.5)=—2.72843 afT* =1.15, the results are in 07> 0.94 ~4.656 ~0239 0178
good agreement with those coming from Etp). Itis worth ~ 0-7> 0.95 —4.808 -0.171  0.301
noticing that the agreement improves slightly in nearly all0-7> 0.96 —4.951 —0.089  0.550

the cases with respect to the MD data, essentially revealing

the approximate nature of the direct formula given by Eg.

(10). Nevertheless, one can conclude that Bd) leads to ~ Schmidt[28] who attributed the discrepancies of his results
accurate predictions &% even at very high densities. It is at high density to the thermodynamic inconsistency of the
worth mentioning that the thermodynamic consistency that i€losure he used.

obtained by an optimization of the paramefeis very im- We come now to the calculation of the two-body entropy
portant in the present scheme. This confirms the statement & and the RMPE, namelyAS=S**-S,, which are pre-
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sented in Table Il. Strikingly, the results &, being ob- By the light of our results, it appears that E§) is valid
tained independently fror8** by means of Eq(12), are in  only at low and moderate densities i.e., belg#=0.5,
excellent agreement with the MD ddtk9,2] in all the cases Wwhile Eq. (10) is reliable also at higher ones, small discrep-
considered here, which means that the pair-correlation fund@ncies appearing only near the freezing line. Sarkisi®}
tions g(r) obtained from the VM integral equation are cor- has shown that Eq$9) and(10) are equivalent when bridge
rect for a wide region of the phase diagram. The RMPE idunctions of the form given by Ed4) are used and with the
then determined fror8®*, which is obtained from the chemi- assumption that the correlation functions satisfy linearity
cal potential calculated by using either E40) or Eq. (8). with respect to the charging parameter for the particle inser-
We have not considered the case with E.since it leads to tion of Kirkwood’s formula. The present numerical results

. NP - reveal that this is not the case at densities characteristic of
mneorrect rsz:‘)itzetlzletlegatg“ﬁ’]se '2 S:)"::)an ‘;fig’nzmrﬁgjg‘?r:sth the dense liquid. Therefore, it is likely that the linearity does

calculation ofS®*. As a result, the calculatelS take higher ot hold any more at high densities. Finally, for the purpose

I h he MD h he f i dpf determining small quantities such as the residual multipar-
values than the ones whatever the formulation Us€dycie entropy, further improvement will depend on a better

however those coming from the Gibbs-Duhem integratiorysmyiation of the excess chemical potential as well as on a
are seen to be in slightly better agreement. better expression of the bridge function on which it is based.

As evidenced by Giaquintet al. [2,21], the RMPE re- In conclusion, we have calculated the excess entropy di-
flects the phase changes of the system despite its smallneggetly in terms of correlation functions. In the present
and a vanishing\ S may correspond to the freezing of the scheme, its evaluation relies on an accurate determination of
liquid. It is seen that the zeros &fS we have obtained are the chemical potential. Within the integral equation of
shifted toward higher densities and, according to this crite\ompe and Martyno16], we have shown that the direct
rion, the resulting freezing densities are somewhat higheformulation proposed by Kiselyov and Martynf®27] gives
than those of the simulation. The RMPE coming from thecorrect predictions, while the direct formula of Lé#&4]
Gibbs-Duhem relation yields the best predictions, and it igyives good results only at low and moderate densities. There-
worth mentioning that aT* =1.15 and 0.75 our results are fore, both direct formulations of the chemical potential are
very similar to those obtained by Lomiled al. [36] with the  reliable to obtain the liquid-gas coexistence curve as shown
reference hypernetted chain integral equation. Neverthelesby Duh and Haymeit29]. This study opens the possibility of
to calculate the excess entropy, these authors used a defigieing toward the determination of phase diagrams for differ-
tion in terms of the excess free energy. They attributed thent types of potential by a formulation based only on corre-
discrepancies to the evaluation 8§, which represents the lation functions. In addition, we have also shown that the
major source of errors. From our calculations, we find thatwo-body entropy can be calculated with a high degree of
the evaluation o5% represents the essential impediment foraccuracy and could be used for the determination of the self-
an accurate determination of the RMPE since in our integradliffusion coefficient by means of an universal scaling law
equation scheme it relies on the evaluation of the chemicaduch as that proposed by Dzugutp4] for dense liquids.
potential by an approximate direct formula. Work along these lines is in progress.
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